A Novel Time-to-Digital Converter Architecture Based on Coding Theory

Congbing Li Haruo Kobayashi

Gunma University

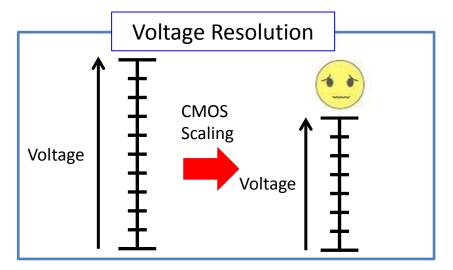
Gunma University Kobayashi Lab

Outline

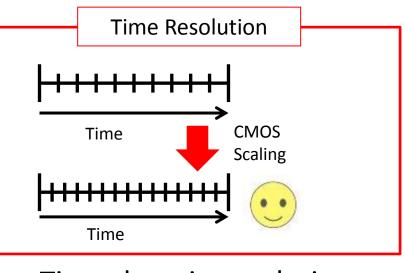
- Research Objective & Background
- Flash TDC and Problems
- Coding Theory
- Coding Theory based TDC
- FPGA Implementation
- Conclusion

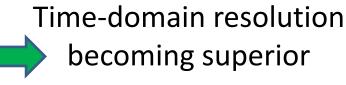
Research Objective

Objective


- Development of
 - Time-to-Digital Converter (TDC) architecture with high-speed and small hardware

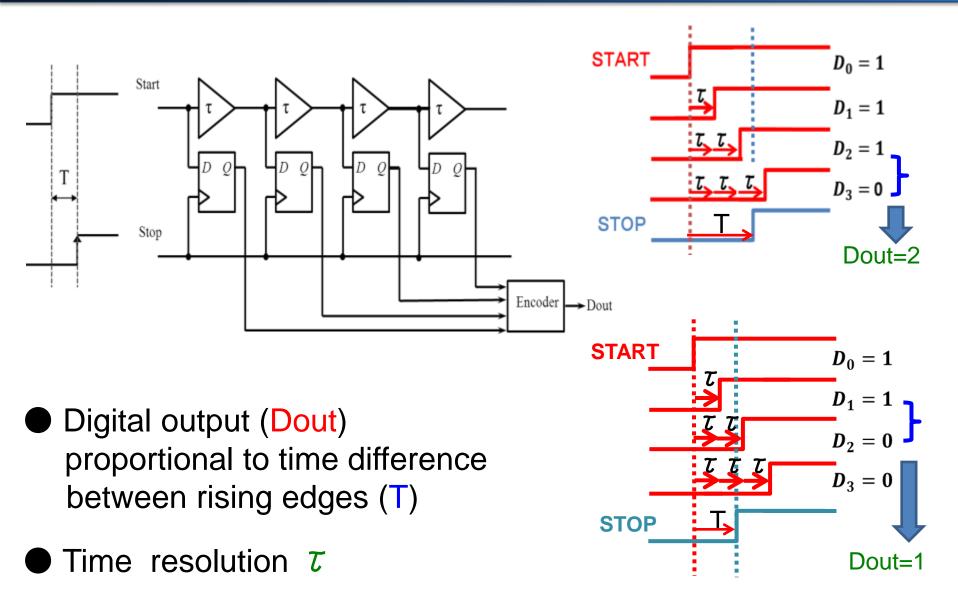
Approach


Utilization of coding theory


Research Background

TDC plays an important role in nano-CMOS era

Voltage-domain resolution facing difficulties due to reduced supply voltage



TDC measures time interval between two signal transitions, into digital signal.

(widely used in ADPLLs, jitter measurements, time-domain ADC)

Flash TDC

Problems of Flash TDC

An n-bit flash TDC with 2^{n} quantization levels

Advantages

High-speed timing measurement Single-event timing measurement All digital implementation

Disadvantages

 $2^{n}-1$ delay elements, $2^{n}-1$ Flip-Flops n-bit thermometer-to-binary code encoder

Large circuits High power consumption

Coding Theory (1/3)

Gray Code

a binary numeral system where two successive values differ in only one bit

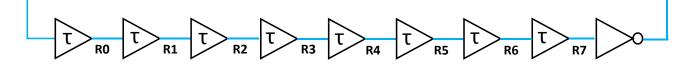

Decimal numbers	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Table. 4-bit Gray Code

- For Gray code, between any two adjacent numbers, only one bit changes at a time
- Gray code data is more reliable compared with binary code

Coding Theory (2/3)

In a ring oscillator, between any two adjacent states, only one output changes at a time. This characteristic is very similar to Gray code.

	8-stage Ring Oscillator Output						4-bit Gray Code				
RO	R1	R2	R3	R4	R5	R6	R7	G 3	G2	G1	G0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	1	0	0	0	0	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	1	1	0
1	1	1	1	1	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	1	0	1
1	1	1	1	1	1	1	0	0	1	0	0
1	1	1	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	0	1	0
0	0	0	0	0	1	1	1	1	0	1	1
0	0	0	0	0	0	1	1	1	0	0	1
0	0	0	0	0	0	0	1	1	0	0	0

For any given Gray code, its each bit can be generated by a certain ring oscillator.

Coding Theory (3/3)

Cyclic code

a cyclic code is a block code, where the circular shifts of each code-word gives another word that belongs to the code.

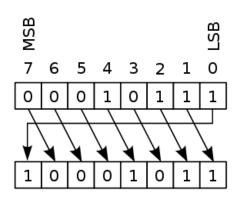


Figure. Cyclic code

 Cyclic code can be applied to generate the lower bits of Gray code, which can reduce the frequency of the outputs

Table. Cyclic code with code-word 00001111

	Cyclic code with code-word 00001111							
State	C0	C1	C2	C3	C4	C5	C6	C7
0	0	0	0	0	1	1	1	1
1	1	0	0	0	0	1	1	1
2	1	1	0	0	0	0	1	1
3	1	1	1	0	0	0	0	1
4	1	1	1	1	0	0	0	0
5	0	1	1	1	1	0	0	0
6	0	0	1	1	1	1	0	0
7	0	0	0	1	1	1	1	0

Cyclic Code		Gray Code
C1	is the same as	G1
C0 XOR C1	is the same as	G0

Coding Theory based TDC Architecture (1/2)

A coding theory TDC architecture can be conceived based on Gray code:

- the upper Gray code bits are generated by grouping a few ring oscillators
- the lower Gray code bits are conceived by cyclic code generators, in order to reduce the frequency of the output

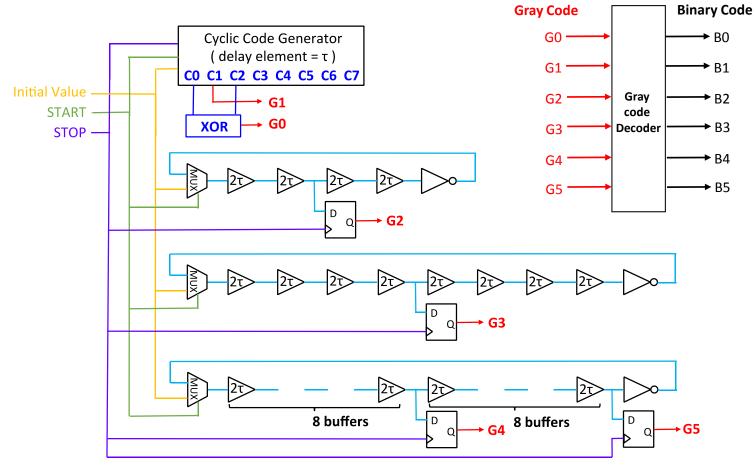


Figure. Proposed 6-bit coding theory based TDC

Coding Theory based TDC Architecture (2/2)

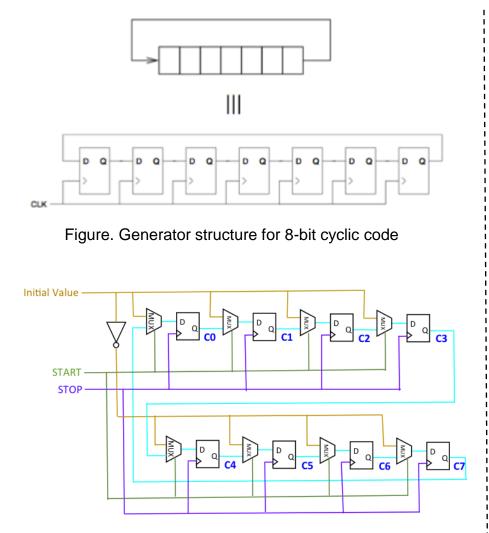
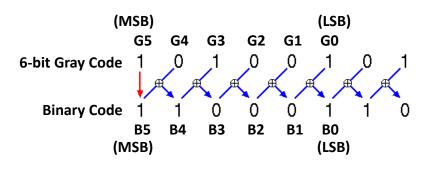
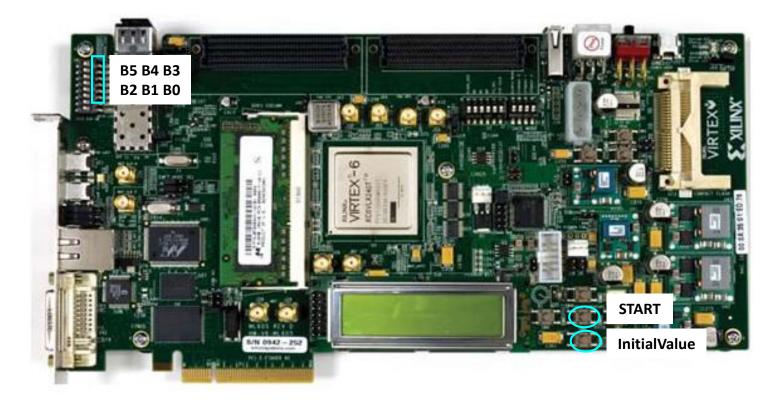
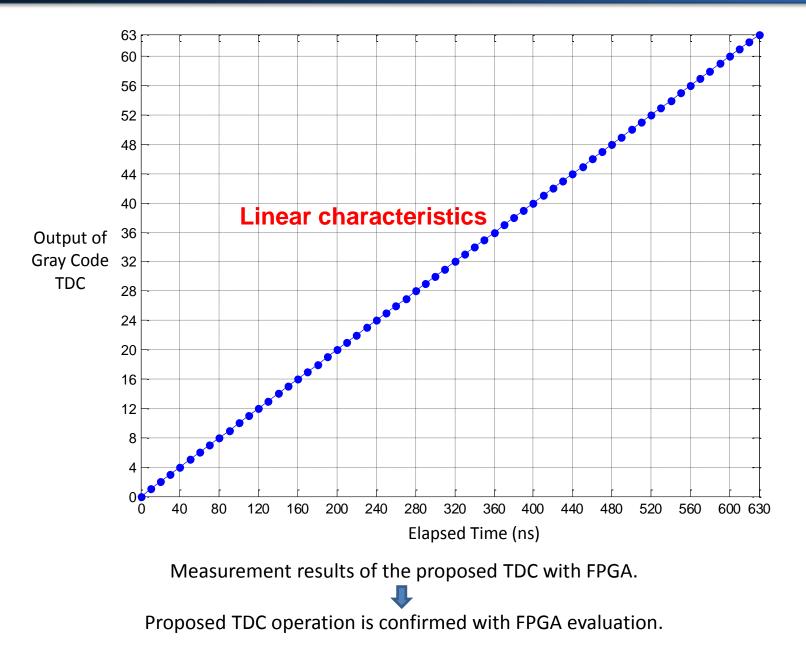



Figure. Circuit diagram of 8-bit cyclic code generator



B5=G5		
B4=B5	\oplus	G4
B3=B4	\oplus	G3
B2=B3	\oplus	G2
B1=B2	\oplus	G1
B0=B1	\oplus	G0


Figure. Gray code decoder

FPGA Implementation (1/2)

Proposed TDC implementation on Xilinx FPGA

FPGA Implementation (2/2)

Conclusion

We have proposed a code theory based TDC architecture

- Comparable performance to Flash TDC
- Significant hardware & power reduction
- the proposed code theory TDC uses only 28 delay cells and 14 flip-flops, and the maximum stage of the ring oscillator is 16
- while the corresponding flash TDC requires 64 delay cells and 64 flipflops, and the maximum stage of the ring oscillator is 64

We have implemented the proposed TDC with FPGA Confirmed its operation